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Abstract—The buckling behaviour is investigated for an axially compressed elastic-plastic cylindrical panel
of the type occurring in stiffened shells. The bifurcation stress is determined analytically and an asymp-
totically exact expansion is obtained for the initial post-hifurcation behaviour in the plastic range. For
panels with small initial imperfections the behaviour is analysed asymptotically on the basis of the
hypoelastic theory that results from neglecting the effect of elastic unloading. The imperfection-sensitivity
of an elastic~-plastic panel is also computed numerically by a linear incremental method, and the results are
compared with the results of the asymptotic analysis. For a low hardening material the panel is found to be
imperfection-sensitive in the whole range of curvatures considered, whereas for a high hardening materiat
the panel is only imperfection-sensitive if the curvature exceeds a certain value.

1. INTRODUCTION
The type of axially compressed cylindrical panels to be considered here occur between
stiffeners in longitudinally stiffened cylindrical shells. When the stiffeners on such cylindrical
shells are sufficiently close, the critical bifurcation mode is an overall mode with a circum-
ferential wavelength much longer than the stiffener spacing. However, for larger spacing of the
stiffeners, local buckling between stiffeners may be the critical mode. In the present paper the
interest shall centre on this local buckling of the cylindrical panels between the stiffeners.

The initial post-buckling behaviour of elastic cylindrical panels has been investigated by
Koiter[1], on the basis of the general theory of elastic stability {2]. This investigation shows that
the post-buckling behaviour is stable for sufficiently fiat panels in agreement with the behaviour
of plates, while more curved panels have unstable post-buckling behaviour. The initial post-
buckling analysis has been extended by Stephens[3] to also account for the torsional rigidity of
the stiffeners and for the effect of internal pressure, which tend to increase the bifurcation
stress and to decrease the imperfection-sensitivity. Post-buckling analyses have also been
carried out for orthotropic elastic panels with shear deformability[4] and for sandwich
panels[S].

The present paper gives an. investigation of the post-buckling behaviour and the im-
perfection-sensitivity of elastic-plastic cylindrical panels compressed into the plastic range. The
bifurcation behaviour at the tangent modulus load is determined analytically, and in cases
where the bifurcation mode is unique Hutchinson’s asymptotic theory(6,7] is employed to
obtain expressions for the initial post-bifurcation behaviour. For the effect of small initial
imperfections an asymptotic analysis is carried out, based on neglecting the influence of elastic
unloading. This type of hypoelastic asymptotic analysis was developed by Hutchinson and
Budiansky[8] for the case of a cruciform column and has also been used by Needleman and
Tvergaard[9] for an axially compressed square plate. The behaviour of imperfect cylindrical
panels is also computed numerically by a linear incremental method, and the results are
compared with the asymptotic results.

2. PROBLEM FORMULATION

The narrow cylindrical panel is taken to be part of a longitudinally stiffened circular
cylindrical shell under axial compression. Here the cylindrical panel occurs as a section of the
shell bounded by two neighbouring stiffeners, and the local buckling mode of interest is one in
which the stiffeners remain straight, while the shell buckles in a short wave pattern between the
stiffeners.

The shell has the thickness h, the radius R, and the circumferential distance b between the
equally spaced stiffeners (Fig. 1). The main effect of the stiffeners is to prevent waviness of
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Fig. 1. Part of axially stiffened circular cylindrical shell.

radial deflections along their lines of attachment. As in Koiter's analysis of the elastic
cylindrical panel[1], this is the only stiffener constraint we shall account for in the present
investigation. Thus, we shall assume that there is no constraint on tangeatial shell dis-
placements along the stiffeners, and that the torsional rigidity of the stiffeners can be neglected.
It may be added that an analysis taking account of all stiffener constraints would follow the line
of that given in Ref. (10} for a flat stiffened panel.

In the following we let a point on the shell middle surface be identified by the coordinates
(x!, x¥) = (x, s), where x and s are measures of distance in axial and in circumferential direction,
respectively. The displacements of the shell middle surface are v* in the direction of the
surface base vectors and w in the direction of the outward surface normal. Then, within the
context of Donneli-Mushtari-Viasov shell theory the increment of the membrane strain tensor
.4 and the increment of the bending strain tensor &, are

é‘=%(6¢+§")-d¢ﬁ?+%(ﬂ‘ﬁ’.’+W&W‘;)
, . 2.1
kg = ¥ng (2.1)
Here ( ), denotes covariant diffeventiation, and (') denotes differentiation with respect to some
monotonically increasing parameter that characterizes the loading history. Furthermere, a,,
and d,g are the covariant components of the metric tensor and the curvature tensor, respec-
tively, for the undeformed middle surface.

The three dimensional stress increments &7 and strain increments 4y in the shell material
are assumed to be related by the equations

¢ = L%y 2.2

with L% = [ ™ = [ 4 Here, Latin indices range from 1 to 3, while Greek indices range from 1
to 2. The instantaneous moduli L* have two branches, one corresponding to plastic loading,
the other to elastic unloading.

The theory of plasticity employed here is small-strain J-flow theory with isotropic harden-
ing. In the three dimensional x'-coordinate system with metric tensor gy the instantaneous
moduli are
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where E and v are Young’s modulus and Poisson’s ratio, respectively, and
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Here the initial value of (0. )us, is the yield stress o, and the tangent modulus E, is the slope of
the uniaxial stress-strain curve, The representation of uniaxial stress-strain behaviour chosen is
a piecewise power law with continuous tangent modulus

o
B foro=ge,
€= n 2.6
2’1{_1,(_‘_{) -l+ 1], foro>o,
Ein\oy,/ n

where n is the strain hardening exponent.
Since the stress state in the shell is approximately plane, only the in-plane stresses enter into
the constitutive relations, and we can write
% =[P, Q@n

where the tensor of in-plane moduli is given by

. o8B %
L8 = [abrd T .8

and the Lagrangian strain increment tensor at distance x* outward from the shell middle surface
is approximated by

Tiag = €ag = X Kup. .9

The membrane stress tensor N** and the moment tensor M*? are taken to be

M2 A2
Ne=[ o®dr, M*=- f o dx’. 2.10)
/2 ~hi2

Using eqns (2.7) and (2.9) in (2.10) gives incremental relations for N** and M in terms of .
and K, Now, within the context of Donnell-Mushtari-Viasov sheli theory the incremental
principle of virtual work takes the form

f [N*P8¢,5 + M*8kos + NP ,0W 3] dA = (EVW) Q.11
A

where (EVW)’ is the increment of the external virtual work. In the following the integration
area A shall be chosen according to the smallest repeatable intervals in the periodic defor-
mation pattern.

As the buckling pattern is periodic in circumferential direction, due to the constant stiffener
spacing, we need only consider a shell-section between the centres x>=0, b of the two
neighbouring cylindrical panels. Due to the symmetry of mode displacements about these panel
centres the boundary conditions can be specified as

wy_ _dw_ Pw _ 2
5;5~vz-—5;5 m 0 atx*=0,b. (2.12)

Across the line of attachment of a stiffener we require continuity of all field quantities, except
for the possible discontinuity of the transverse shear force resulting from the constraint

w

-0 a x*=bf2. 2.13)

In axial direction the mode displacements are periodic, and the resuitant axial load is specified
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by the load parameter A, as
b
f N"dx?=ra;''hb (2.14)
0

where o;'! is a constant.

3. PLASTIC BIFURCATION AND POST-BIFURCATION BEHAVIOUR

The stress state in the perfect cylindrical shell prior to bifurcation consists of a constant
uniaxial stress o'! = Ao;!" at every point of the shell. Thus, at any load level the components of
the in-plane moduli L*™ are constant throughout the shell, and the lowest bifurcation load can
be determined as that of an elastic orthotropic shell with moduli equal to the instantaneous
plastic moduli. In the following we shall use the expressions E,, E,, E,; and Eg for the physical
values of the plastic branches of L', [#8, [112 and [2, respectively, at the bifurcation
point, and we shall use D, = E,h*/12, D, = E;h*/12, Dyy = E\;h%/12 and Dg = Egh’/6.

For a complete unstiffened cylindrical shell, simply supported at the ends, the bifurcation
modes are found of the form

m wx anx')
v, = hc, cosTcos-—I;-
M . wx’ . amx'
v2= hey sm—;—sm——b—- 4 (3.1
m wx® . amx'
w = i cO§ ~—— sin ——
b b J

where b = 7R/m (m is the circumferential wave number); or in the form of an axisymmetric
sinusoidal mode. The bifurcation stress o, corresponding to (3.1) is given by
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o= 3 (3.2)
a
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An iterative procedure is used to determine the numerically smallest critical stress o, the
corresponding value(s) of the axial waveparameter a and the instantaneous moduli, for given
material and given values of A, b and R.

In the elastic range it is well known that bifurcation of a complete unstiffened shell occurs at
a. = -{3(1- ¥} '2ER/R, with several simultaneous buckling modes[2). These include the
axisymmetric modes and the modes with circumferential wave number m up to a certain
limiting value, above which the bifurcation stress increases with increasing m. Figure 2
illustrates this for a rather thick shell, where the limiting value of m is between 12 and 13. In the
plastic range the modulus E; decreases more rapidly than the other prebuckling moduli.
Therefore, the plastic bifurcation stress is smallest for the axisymmetric mode and increases
with increasing circumferential wave number. An example of this is also shown in Fig. 2, for
oJE = 0.002.
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Fig. 2. Bifurcation stress versus circumferential wave number for complete unstiffened cylindrical shell
with Rlh =200, n =10, »=0.3.

In a stiffened shell with stringers located at x*= b2+ kb (for integer k) the bifurcation
modes (3.1) are still valid, provided that the only constraint along the stiffeners is the
suppression of radial deflection waves. Thus, the bifurcation stress for the cylindrical panel is
also given by the expression (3.2). Koiter[1] has found that for a sufficiently narrow cylindrical
panel in the elastic range the bifurcation stress (3.2) reduces to

e Tk . _via-»_ b
o= Em{l + 8%, 8 e VR 3.5)

This elastic bifurcation stress is valid for ¢ = 1, with only one critical wave parameter a = 1.
For 0> 1 the earlier mentioned critical stress for the complete elastic shell is valid, with two
critical a-values for each circumferential wave number m.

For a cylindrical panel that bifurcates in the plastic range we shall also use the parameter ¢
to characterize the “flatness” of the panel. Here again we find two critical a-values for each
value of 8 in the range 6 > 1, and also in certain ranges of # values below unity, dependent on
the values of o.Jo, and n. In the present investigation the main interest is devoted to cases
where only a single bifurcation mode (one a-value) is associated with the critical stress.
Examples of such cases are shown later in Figs. 3 and 4.

An asymptotic theory of initial post-bifurcation behaviour in the plastic range has been
developed by Hutchinson[6, 7], which extends Hill's general theory of bifurcation in elastic~
plastic solids{11, 12]. As in Koiter’s elastic post-buckling theory[2] the load in the vicinity of
the bifurcation point is expanded in terms of the buckling mode amplitude, but in the plastic
range the analysis is further complicated by the necessity to account for elastic unloading.-

In a case where the buckling mode is unique, the asymptotically exact expression for the
load parameter A in terms of the buckling mode amplitude ¢ is obtained of the form

A=:{¢+I\|£+A2§I+B+' b (36)

for £=0. Here, we normalize the buckling mode so that for £=1 the maximum normal
deflection w is equal to the shell thickness. The constant A, is determined by the requirement
that plastic loading takes place throughout the current plastic zone, except in at least one point
where neutral loading takes place. After bifurcation a region of elastic unloading spreads into
the material from each of these neutral loading points, and the effect of these unloading regions
is accounted for to lowest order in the third term of the expansion (3.6).

For the cylindrical panels considered elastic unloading starts on the outside of the shell at
the points of maximum outward deflection. In the limiting case of a flat plate (8 = 0) unloading
starts simultaneously at the points of maximum outward- and inward deflection. The value of
the parameter 8 depends on the shape of the unloading regions spreading into the material{7],
and here we find B = 1/3. The constant A, is found negative in all cases, so that the truncated
expansion (3.6) can be used to estimate the maximum support load, which is slightly above the
critical bifurcation load. The values of the constants o, A, and A, are given in Table 1 for a few

§S Vel. 13. No. 16mG
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Table 1. Constants in asymptotic post-bifurcation expansion for various
cylindrical panels

hib 0 alE v n -ele, A, AqlA, B

0025 050 00020 03 10 1104 0643 191 13
0.025 050 00020 03 3 1162 0884 -359 13
0025 075 00028 03 10 1033 0804 -349 13
0025 075 00028 03 3 1052 0878 ~484 13

examples of cylindrical panels that bifurcate in the plastic range with only a single bifurcation
mode.

It is known that bifurcation stresses obtained by J,-deformation theory are often in better
agreement with experiments than the predictions of J,-flow theory[7]. However, for the cases
considered in Table 1 bifurcation does not occur far into the plastic range, so the discrepancy is
rather small with a maximum of 1.7% corresponding to the case 6 = 0.5, n = 10.

4. ASYMPTOTIC ANALYSIS WITH NO ELASTIC UNLOADING

The effect of a small initial imperfection on a structure compressed into the plastic range has
not yet been described by a simple asymptotic formula such as those obtained by Koiter[2] for
the elastic range. The main difficulty, is that an asymptotic expansion of the initial part of the
equilibrium solution is only valid up to the point at which elastic unloading starts, while a
second expansion that accounts for the growing elastic unloading region is required to represent
the remaining part of the equilibrium path{13]. Also, the maximum support load of a perfect
elastic-plastic structure is attained at a limit point after finite buckling mode deflections and not
at the bifurcation point as in the elastic range.

Heére, we shall analyse the imperfection-sensitivity on the basis of J-flow theory, but with
elastic unloading neglected. By using this hypoelastic theory the difficulties mentioned above
are avoided and an asymptotic estimate is obtained for the imperfection-sensitivity of the
hypoelastic cylindrical panel. This approach has been used earlier by Hutchinson and
Budiansky[8] for the case of a cruciform column, and by Needleman and Tvergaard [9] for the
case of an axially compressed square plate. The cruciform has the special property that, often,
no strain rate reversal occurs before the maximum load, so that neglecting elastic unloading is
completely justified. For the plate strain rate reversal does occur slightly before the maximum
load. However, the results of Ref. [9] show that the hypoelastic expansion gives a reasonable
estimate of the imperfection-sensitivity of an elastic-plastic plate. Here, the asymptotic
expansion based on hypoelastic theory shall be extended to cover shell behaviour, and shall be
used for the cylindrical panel. As the expansion has been described in detail for the plate(9],
only the main steps are given here.

The perfect shell made of hypoelastic material has the same bifurcation stress as the
corresponding elastic-plastic shell, but instead of (3.6) the initial post-bifurcation expansion in
the case of a unique buckling mode takes the form

A=A+ AME+ A+ @.D
Vo = U0+ (zl;,,f + (123).§z+- -

4.2
w=w°+(;3§+(3§2+--- “?

where the higher order contributions are taken to be orthogonal to the bifurcation mode
f N*w.wgdA=0, fori>1. 4.3)
A

The plastic branches of the J,-flow theory moduli are functions only of the stresses, and can be
expanded in a Taylor series about the bifurcation point
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Substituting (4.2) into (2.1) gives the expansion of the strains, and the similar expansion of the
stresses is related to the strains by using (2.7) and (4.4).

Expressions for the parameters A,*, A,* etc. are obtained by substituting the expansions
into the incremental principle of virtual work (2.11). Hutchinson[7] has given the expression for
A:™, which is zero for the cylindrical panel due to symmetry. The expression for A,™
considerably simplified if A, =0, in which case we find

W=7 @“3)
= {3N"‘»'J,‘;'v’,+533°ﬂ“3 0. dA
Lo 2L c‘:;.,s,",,}dv o
D= f { u) a;v):, (1).‘3 3aNo (‘3‘(‘3‘} A
+fv{a:;“ %1_:&':1 Tesoa + 2(3')‘”5;'::‘ t%’% "’ll)ﬂ}dv @.7)

where V is the volume of shell material corresponding to the middle surface area A.

The expressions (4.6) and (4.7) depend on the second order contributions to the asymptotic
expansions, which are found by solution of a variational equation obtained from the principle of
virtual work. For A,™ =0 the variational equation takes the form

Q) [¢3] @) m
f {M™8K,5 + NP8%€,5 + NP w ,0w g + N*Pw 8wz} dA =0 (4.8)
A
@ @ 1o, L*% o
o™ = ﬁc"’"n.ﬁ +5 o* e Ny 4.9
@ 1@ 1m m 3@
'q,,—-(v.,’,+ v,,) d.,,w iw,w,—x Was 4.10)

where N*# and M are obtained from (2.10) using (4.9) and (4.10). The solutions 5, oy, & are

periodic in axial direction, and are the same in all panels, as they grow proportionally with &
while neighbouring panels have identical bifurcation modes with opposite signs of the am-
plitudes. Thus, the second order mode displacements are symmetric about the line of attach-
ment of a stiffener, in addition to the symmetry about the panel centre lines.

The load terms in eqn (4.8) suggest that the boundary value problem has a solution of the
form

1 9
%)1 =éx'+ l’] sin Za;rx
1
(121)2 = §,+ 0, cos Za;rx T 4.11)
1
W=+ ﬁcosza;rx J
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where € is a constant, and 7, W, #;, §, and W are functions of x>. Furthermore, this solution
satisfies the orthogonality condition (4.3). With the solution (4.11) the variational equation
separates into two independent boundary value problems in the interval 0 < x?=< /2, one for
the ()-quantities and one for the ()-quantities. Each of these problems is solved numerically by
making a finite element approximation of the x’-dependent functions in terms of Hermitian
cubics. The ()-quantities automatically satisfy the constraint (2.13) and thus have the
boundary conditions (2.12) at both ends of the interval x>=0, b/2. For the ()-quantities the
boundary conditions are (2.12) at x> =0, and at x = bj2 the boundary conditions are the three
first conditions in (2.12) and the condition W =0, which results from (2.13). Furthermore,

according to (2.14) the integral of g}" over the panel width must vanish.

The imperfections considered in this analysis are taken in the shape of the critical
bifurcation mode (3.1) with amplitude £ The asymptotic analysis of the influence of such
imperfections is divided into a singular perturbation analysis valid for A near A, a regular
perturbation analysis valid for A <A, and finally the matching of these two results(8, 9].

The singular perturbation analysis gives the following asymptotic expression for A as a
function of ¢, in the vicinity of A.,

A=A+ AME+cEE 4. 4.12)

where the constants ¢ and k are undetermined by the analysis, and

¢-1+z: @.13)
8 ___f {aﬁ"" W (m .i‘_ge B 3oy ® )
Y hlee* | Al 12 a1
L w1 el dog™*| W
-—-——ce.,(N“’-Ef -h—-é—:— e.,.)}dA @.14)

dog*” m

(h"" m m m ) aN™ w,,w,,}d& 4.15)

‘1-2 KagKps+Reopl s +'—"'—a’\

fy= J’ {all*’
2= acpr
Here, and in the following e,; denotes the linear part of the membrane strain tensor .. For an
elastic material, linear or nonlinear, the parameter ¢ equals unity.

In the regular perturbation analysis the lowest order effect of a small imperfection is
determined for A <A. The displacements, strains and stresses are written as

[

Va =V +T0 W=WlHW, Nu5=elg+tTlag 0% =00"*+6% (4.16)

where the solution for the perfect shell at the current load level A is denoted by ( )°, while (0
denotes small perturbation quantities that vanish at A =0. All equations are linearized with
respect to the small perturbation- and imperfection quantities. Thus, the constitutive equation
(2.7) yields the linearized relation

-M_.ﬂ:! OL") < r i
Ay} | 0 @.17)

and the linearized principle of virtual work takes the form
J (N*®8eng + MP8kag + No™ (., + Ew.0)6w 5} dA = 0. @.18)
A

To solve eqn (4.18), we expand 7, and W in terms of the set of eigenfunctions of the form
(3.1), with any integer number of halfwaves‘along the length of the shell and over the width of
the panel. We also use the fact that both L, and
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appearing in (4.17) are orthotropic fourth order tensors in the sense
Caﬁ-yﬁ= Cﬂa‘yﬁ= CaB&'y, Clle = C1222 = ClllZ = C2212 = 0 (419)

This property is employed together with the fact that for each eigenfunction in the expansion
also the corresponding e,z and k,s vary as sines or cosines, and the result is a complete
decoupling of the equations for the eigenmode amplitudes. Finally we find that the variation of
the amplitude ¢ of the critical eigenmode (3.1) can be written on the form[9)

-¥

§=£O-ﬁ) p(A) (4.20)

where ¢ is given by (4.13) and p(A) is finite at A = A.. The function p(A), and in particular the
value p(A.), is computed by using the eigenmode expansion in (4.18) and (4.17) and solving for
increasing A in the interval 0 = A <A, (see Appendix).

Matching of the expression (4.20) with the rising part of (4.12) in the vicinity of A = A,
determines the values of the two constants ¢ and k

c==A[pQAN"™, k=1 (4.21)

Now, according to the expression (4.12), with the values (4.21) substituted, the hypoelastic
structure is imperfection-sensitive provided that A,* <0. In that case an imperfection of
amplitude £ converts the bifurcation buckling into snap buckling at a reduced load A, given by
the asymptotic estimate

%= 1- Mf'!l(zﬁﬂ) é.22)
hey 1/(2¢+1)
w=[-E]T e neur e pa e, “23)

Numerically obtained values of the bifurcation stress o, and of the hypoelastic post-
bifurcation coefficient A,* are given in Figs. 3 and 4 as functions of the flatness parameter 6.
The panels considered have a fixed thickness to width ratio h/b = 0.025, but various levels of
yield stress are considered, with strain hardening exponent n = 10 in Fig. 3 and n = 3 in Fig. 4.
The curves are only drawn in the ranges, where a single axial wave parameter a is associated
with .. Clearly, the change from one to two critical a-values occurs closer to the yield stress
when 8 is closer to unity.

For the elastic panel A,;*/A. reduces exactly to the corresponding elastic post-bifurcation
coefficient, with the value 3(1 - »?) in the plate case (8 = 0), and with the change from stable- to
unstable post-bifurcation behaviour at 6 =0.64, as obtained by Koiter[1]. For low strain
hardening, Fig. 3, the material nonlinearities result in imperfection-sensitivity, even at small
6-values. At the larger #-values material nonlinearities and geometric non-linearities contribute
about equally to the imperfection-sensitivity, so that A,™ is close to the corresponding elastic
value. For the high hardening material, Fig. 4, a stable post-bifurcation behaviour is found for
small #-values, but the change to unstable behaviour occurs at a smaller value of 6 than that
found for the elastic panel. Both in Fig. 3 and Fig. 4 we note that the values of A,™, as functions
of 8, are discontinuous at the points where o. equals the vield stress, because the moduli-
derivatives are discontinuous at the yield stress.

Some values obtained for A,*, ¥, p(A;) and u are given in Table 2. For comparison, the
value of p(A.) obtained in the elastic range (with linear prebuckling) is unity, so that with ¢ = 1
the expression (4.23) for u reduces to the well-known result for elastic buckling. It is of interest
to note that the values of 1 obtained in Table 2 are smaller (down to 25%) than those obtained
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Fig. 4.

post-bifurcation coeficient versus flatness parameter for elastic~
plastic cylindrical panels with Ab = 0.025, x = 10, » = 0.3. The curves are only drawn in the range, where

Fig. 4. Bifurcation stress and hypoelastic post-bifurcation coeficient versus flatness parameter for elastic-
plastic cylindrical panels with Wb = 0.025, 2 = 3, » = 0.3. The curves sre only drawn in the range, where the
wave parameter a is unique,

by the elastic formula, for the same values of A;™/A.. In the next section the values given in
Table 2 shall be used to compare the asymptotic estimate of imperfection-sensitivity with

Table 2. Constants in hypoelastic asymptotic analysis for cylindrical panels

with Ab =0.025 and v = 0.3
] olE n  -ade, AN ¥ pr,) »
050 00020 10 1104 044 1716 0045 0344
050 00020 3 L1622 -0059 1231 0.421 0.489
075 00028 10 1033 -0430 1150 0278 0658
075 00022 3 1052 0330 L1071 0628 0978

numerical results.

5. NUMERICAL COMPUTATION OF IMPERFECTION-SENSITIVITY

The behaviour of imperfect panels is here computed numerically by an incremental
procedure based on the variational equation (2.11). As in the preceding section, the im-
perfections considered are taken in the shape of the critical bifurcation mode (3.1) with

amplitude £

In the numerical method employed to solve (2.11) the displacements are expanded in terms
of trigonometric functions in the axial direction, while a one-dimensional finite element

approximation is used in the circumferential direction.
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[ 1 [ 1
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1
GRLsCa | W) sin ———""’:‘“

Here, the functions U?(x?), V(x?) and W®(x?) are approximated by Hermitian cubics within
each finite element, and the wave parameter a is that corresponding to the critical bifurcation
stress. This method has also been used for an axially compressed oval cylindrical shell[14],
within the context of a more accurate shell theory.

The boundary conditions specified are the symmetry conditions (2.12) at the panel centres in
addition to the stiffener constraint (2.13), which gives W®(b/2) = 0 for i = 1. In the expansion
(5.1} it is found that N = 2 givés good accuracy, with a half panel width divided into 2 elements.
The integrals in eqn (2.11) are evaluated by 4 point Gaussian quadrature in circumferential
direction within each element, while in the axial direction it is found sufficient to divide the
interval —4b/a < x' <1b/a in two subintervals, using 4 point Gaussian quadrature within each
subinterval. Through the thickness Simpson's rule is used, with 7 points in (2.10).

The active branch of the tensor of moduli (2.8) at an integration point is determined in each
increment as follows. If the stress state at the integration point is on its current yield surface,
the plastic branch is taken to be active. If g, for that integration point turns out to be negative,
the elastic branch is taken to be active in the next loading increment. This . procedure is
sufficiently accurate if small increments are used and if the transition from loading to unloading,
or vice versa, occurs only once or twice during the loading history.

The results of numerical computations shown in Figs. 5-8 give the load parameter A as a
function of the deflection contribution W, = W"(0), which is quite a good measure of the
bifurcation mode growth. All the results are computed for h/b = 0.025 and » = 0.3, with strain
hardening exponent n = 10 in the first two figures and n = 3 in the last two figures. The flatness
parameter and the yield stress are taken as = 0.5 and o,/E = 0.002 in Figs. 5 and 7, while the
values used in Figs. 6 and 8 are 6 = 0.75 and o/E = 0.0028.

The post-bifurcation behaviour of the perfect panel is computed numerically as the be-
haviour of a panel with a small initial imperfection £ = 0.0002. In all four figures this behaviour
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Fig. 5. Load versus mode defiection for cylindrical panel that bifurcates in the plastic range (h/b = 0.025,
0=0.5, 0/E=0002, n=10, v=0.3).

Fig. 6. Load versus mode defiection for cylindrical panel that bifurcates in the plastic range (h/b = 0.025,
6=0.75, 0JE =0.0028, n = 10, » = 0.3).
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Fig. 7. Load versus mode deflection for cylindrical punel that bifurcates in the plastic range (A/b = 0.025,
#=05, oJE=0.002, =3, ¥=03).

Fig. 8. Load versus mode deflection for cylindrical panel that bifurcates in the plastic range (&b = 0.025,
=075 oJE=0.0028, n =3, »=03),

is seen to agree with the asymptotic expansion (3.6) in that bifurcation takes place under
increasing load and in that a maximum is reached slightly above the bifurcation load after a
finite bifurcation mode deflection. As this characteristic behaviour resuits from the effect of
elastic unioading, it is not predicted by the hypoelastic post-bifurcation expansion (4.1).
However, the hypoelastic expansion with the values obtained for A,™/A. (Table 2) does agree
well with the general trend of the numerically computed post-bifurcation behaviour in each of
Figs. 5-8, apart from the maximum just after bifurcation.

The shell considered in Fig. 5 is in the range of 8-values, where elastic cylindrical panels
have a stable post-buckling behaviour. The clastic-plastic panel with n =10 is clearly im-
perfection sensitive. For the largest imperfection considered, £ = 1.0, a maximum is not reached
in the range considered, but the curve flattens out at a level of reduced support load.

In Fig. 6, for a more curved panel with a higher yield stress, but still with the strain
hardening exponent n = 10, the behaviour is quite similar to that obtained in Fig. 5. The
sensitivity to small imperfections is slightly higher, but for the largest imperfection the support
load is a little less reduced.

The cylindrical panel considered in Fig. 7 is identical to that of Fig. 5, except that the
material is high hardening with n = 3. For the perfect panel the post-bifurcation load after the
maximum decreases to a value slightly below the bifurcation load, in agreement with the small
negative value obtained for A,™/A., but then starts to increase again in the more advanced
post-buckling range. The result is that even for the small imperfection, £ = 0.01, no maximum is
found before the support load exceeds the bifurcation load.

The panel in Fig. 8 is that of Fig. 6, with the strain hardening exponent changed to n = 3.
The behaviour is much like that found in Fig. 7, but the post-bifurcation load reaches a
considerably lower level before again starting to increase in the advanced post-buckling range.
In this case a local maximum is found for £ = 0.01, but not for £=0.1.

A comparison between the numerical results and the asymptotic estimate (4.22) of the
imperfection-sensitivity is given in Fig. 9. Here the curve (4.22) is drawn on the basis of the
parameters 4 and u given in Table 2, and the numerically computed support loads are indicated
by a dot for £ =0.0002, £ =0.01 and £ = 0.1. In Figs. 9%(a) and (b), corresponding to Figs. 5 and
6, the agreement is very good for the range considered. However, for the large imperfection
£=1.0 the support load is underestimated by the asymptotic analysis, as one would expect.

In Fig. 9(c) the agreement is also good for the smallest imperfection, but for £=0.1 no
maximum is reached in Fig. 8, so the range of validity of the asymptotic expansion is smaller in
this case. Such limited range of validity of the asymptotic results hés also been found for elastic
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Fig, 9 ﬁompaﬁsog: of nt}merigai results and asympfotic hypoelastic predictions for the imperfection-
sensitivity of elastic-plastic cylindrical panels. (a) Panel with 8 = 0.5, o JE = 0.002, n = 10. (b) Pane! with
8=0.75, 0/E = 0.0028, n = 10. (c) Panel with ¢ =0.75, 0,/JE = 0.0028, n = 3.

buckling behaviour in a number of cases, in which the initially unstable post-buckling behaviour
changes to stable behaviour in the advanced post-buckling range[15]). This also agrees with
Koiter’s conjecture of the advanced post-buckling behaviour for elastic cylindrical panels[1].
The asymptotic results corresponding to Fig. 7 have not been plotted, as no maxima are
obtained in this figure for comparison. The value of u found for this case (Table 2) indicates a
great deal of sensitivity to small imperfections, but as the change to stable advanced post-
buckling behaviour occurs considerably earlier in Fig. 7 than in Fig. 8 an even smaller range of
validity of the asymptotic result must be expected here.

Although the hypoelastic analysis does not account for the effect of elastic unloading, it is
found that the asymptotic estimate (4.22) gives a good indication of the imperfection-sensitivity
of an elastic-plastic cylindrical panel. This agrees with the results obtained for axially
compressed square plates[9]. The range of validity of the asymptotic estimate is found to be
smaller for a high hardening material than for a low hardening material, because panels made of
a high hardening material have the ability to support loads above the bifurcation load in the
advanced post-buckling range. As in Ref. [9] we conciude that the approximation of neglecting
elastic unloading in the hypoelastic expansion seems to be less important than the ap-
proximation involved in considering lowest order asymptotic results. It may be expected that
also for other shell structures the hypoelastic analysis will prove valuabie for identifving
parameter ranges, where the shells will exhibit imperfection-sensitivity in the plastic range.
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APPENDIX

The function p(A) occurring in (4.20), and in particuular the value p(A.) to be used in (4.21) and (4.23), is determined by
integrating the constitutive relation (4.17) and substituting the result into the principle of virtual work.
For the integration of (4.17) it is convenient to write

7% = L5, + (. (A1)

Substituted into (4.17) this gives the differential equations for (=*

”%-R“,Q"#" (A2)
where
- L) 2,
R =T X Ay
. -rt
s‘-[LI Ly~ i | [_nmv] (Ad)
In eqn (A2) the differential equation for 3'? is uncoupled with the other differential equations, and has the solution
A A A
oﬂ.m[- L -ZR",,dA] L s"expu -zn*’,,w\].u. (AS)
The two coupled diff mtwo"md”mbewmauunwodqmdoumwdthm

quantities 0!+ r,G® and 0" + r,0®, respectively, where
ﬂ(‘) 'Rn ‘R“l 2\/[(R" _Rn +4Ra R"
’2“)} ﬂ 1] ) (A8)
Explicit solutions of these two equations are obtained of the form
A
0"+r.0“-m“J; aS" +n5HdA (A7)

G+ P =g I.. @S RSP A (AB)

qi{A)=exp U‘ ~(R", +nR u)d*\]

@A) = exp [ J; “R",+ R, u]_ (A9)

In the linear elastic range, where the moduli-derivatives vanish, (A6) has no meaning, but here (* =0 is seen directly.

The expressioss obtained for 3 are substituted into (A1), and to satisfy equilibriom these are swbstituted into the
principle of virtual work (4.18), using (2.10). Now, expanding 7, and # and using the orthogonalities due 10 the orthotropy
(4.19), we fimally obtain an equation for the bifurcation mode amplitude £(3), of the form

A
i)+ 3 [ J; fravea]+ fwg=o (Al0)

where f,, f, /2 and f are known functions of A. The equation for p(A) is obtained directly by substituting the ¢
(4.20) into (A10), and the value p(A,) is obtained by solving successively for increasing A in the interval 0A <A,



