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AMInd-The buctliDc behaviour is investipted for an axially compressed elastit-plastic cylindrical panel
of tbe type occurring in stifened shells. The bifurcation stress is determined analytically and an asymp­
totically exact espauion is obtained for the initial pOst.bifureatinn behaviour in tbe plastic range. For
paaels with small iDitiIl imperfections the behaviour is analysed asymptotically on the basis of the
hypoelastic theory that results from nqlecting the elect of elastic unloading. The imperfection-sensitivity
of an eIastic-plastic paael is also computed numerically by a linear incremental method. and the results are
compared with the results of the asymptotic analysis. For a low hardenill8 material the panel is found to be
imperfee:tion-sensitive in the whole range of curvatures considered. whereas for a high hardening material
the panel is only imperfection-sensitive if the curvature exceeds a certain value.

1. INTRODUCTION
The type of axially compressed cylindiical panels to be considered here occur between
stiffeners in loqitudinally stiffened cylindrical shells. When the stiffeners OD such cylindrical
shells are sufficiently close, the critical bifurcation mode is an overall mode with a circum­
ferential wavelength much looser than the stiffener spacing. However, for larger spacing of the
stiffeners, local buckling between stiffeners may be the critical mode. In the present paper the
interest shall centre on this local buckling of the cylindrical panels between the stiffeners.

The initial post-buckling behaviour of elastic cylindrical panels has been investigated by
Koiter[l], on the basis of the general theory of elastic stability[2]. This investiption shows that
the post-buckling behaviour is stable for sufficiently flat panels in agreement with the behaviour
of plates, while more curved panels have unstable post-buckling bebaviour. The initial post­
buckling analysis bas been extended by Stephens [3] to also account for the torsional rigidity of
the stiffeners and for the effect of internal pressure, which tend to increase the bifurcation
stress and to decrease the imperfection-sensitivity. Post-buckling analyses have also been
carried out for ortbotropic elastic panels with shear deformability[4] and for sandwich
panels [S].

The present paper gives an. investigation of the post-buckling behaviour and the im­
perfection-sensitivity of elastic-plastic cylindrical panels compressed into the plastic range. The
bifurcation behaviour at the tangent modulus load is determined analytically, and in cases
where the bifurcation mode is unique Hutchinson's asymptotic theory [6, 7] is employed to
obtain expressions for the initial post-bifurcation behaviour. For the effect of small initial
imperfections an asymptotic analysis is carried out, based on neglecting the influence of elastic
unloading. This type of bypoelastic asymptotic analysis was- developed by Hutchinson and
Budiansky[8] for the case of a cruciform column and has also been used by Needleman and
Tverpard[9] for an axially compressed square plate. The behaviour of imperfect cylindrical
panels is also computed numerically by a linear incremental method, and the results are
compared with the asymptotic results.

2. PROBLEM FORMULATION

The narrow cylindrical panel is taken to be part of a longitudinally stiffened circular
cylindrical shell under axial compression. Here the cylindrical panel occurs as a section of the
shell bounded by two neighbouring stiffeners, and the local buckling mode of interest is one in
which the stiffeners remain straight, whDe the shell buckles in a short wave pattern between the
stiffeners.

The sbell has the thickness h, the radius R, and the circumferential distance b between the
equally spaced stiffeners (Fig. 1). The main effect of the stiffeners is to prevent waviness of
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F"II- 1. Part of axially stileaed c:ircular cylilldrical sbeU.

radial deflections alone their lines of attachment. As in Koiter's analysis of the elastic
cyJindrical puel[tl. this is the only stiffener constraint we sIIaIl account for in the present
investiption. Tbua, we shall USUIl'le that there is DO CODItt'Iint on tnIeatiai llheII dis­
placements alonatbe atIIewn. and that the torsional riPtitY of the sdIeuen e8It be neJlected.
It may be added that aa""" tIkina ICCOUDt of all sti6aer~ would toUow the line
of that atv- in IW. (10) for a flat stiI...d panel.

In the followial we let a poiat on the sIleO middle surface be ideJdiIed by the coordinates
(x·, x~=(x. ,), where x and , are measures of distance in axial and in circumferential direction,
respectively. The displacements of the sheD middle surfaee are v· in the direction of the
surface base vectors and w in the direction of the ontward surface DOl'DIal. Then, within the
context of DoueI-M1II1IWi-Vlaaov sheD tJaeory the iIIc::remeDt of tile JDeJDbnIle stnUIt tensor
e." and the ia.crtment of the bencIiq strain tensor It.,. are

. 1(.. ) LI_.+1( • +. )e"'=2 »..,+v-.,. -,...w 2 W..W". W..W".

(2.1)

Here ( ).. duo_ covarilal diltRfttiation, aad n denotes diIennUa&ioIl with J'fIPICl to SOllIe

1D08OtOfticaIl' inc:NuiaI ,.,..... that cbIracterizes tile loIdiIII -torY. Pwdllir-.. "..,
and d.- are tile cov"t compoaoats of the metric tensor aad the curvaa.e tensor, rupee­
tively, for the UDdef__ IIIidtIle surface.

The three dimensional stress increments oil and strain increments .. in ibe sheD material
are assumed to be related by the equations

(2.2)

with L /lid =Li/Id. .. Ltill. Here. Latin indices ranae from 1 to 3, wbile Greek indices ranae from 1
to 2. The instlotaneoUa moduli L /lid have two branches. one correspondina to plastic loIding,
the other to elastic unloading.

The theory of plasticity employed here is small-strain Jrftow theory with isotropic balden­
ina. In the three dimenaional Xi-coordiftate system with metric tensor Ii the instantaneous
moduli are

where E and 1I are Young's modulus and Poisson's ratio. respectively. and

,il = UII_~ gllg"pld, U_ =H,.""II,ldfl2

{

3 EIB,-1
for u_ =(U_)IMX and 0"_ > 0

f(u_)= 2E1E,-(1-211)/3'

O. for u_ < (u_)max or 17_ < O.

(2.3)

(2.4)

(2.5)
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Here the initial value of (O'~)max is the yield stress U y, and the tangent modulus £, is the slope of
the uniaxial stress-strain curve. The representation of uniaxial stress-strain behaviour chosen is
a piecewise power law with continuous tangent modulus

(2.6)

where It is the strain hardening exponent.
Since the stress state in the shell is approximately plane, only the in-plane stresses enter into

the constitutive relations, and we can write

(2.7)

where the tensor of in-plane moduli is given by

(2.8)

and the Lagrangian strain increment tensor at distance x' outward from the shell middle surface
is approximated by

(2.9)

The membrane stress tensor NtII/J and the moment tensor MtII/J are taken to be

(2.10)

Using eqns (2.7) and (2.9) in (2.10) gives incremental relations for NtII/J and M"II in terms of i.,a
and "'" Now, within the context of Donnell-Musbtari-Vlasov sbell theory the incremental
principle of virtual work takes the form '

(2.11)

wbere (BVW)' is the increment of the external virtual work. In the following the integration
area A sball be chosen according to the smallest repeatable intervals in the periodic defor­
mation pattern.

As the buckling pattern is periodic in circumferential direction, due to tbe constant stUfener
spacing, we need only consider a shell-section between the centres x2 = 0, b of the two
neighbouring cylindrical panels. Due to the symmetry of mode displacements about these panel
centres the boundary conditions can be specified as

(2.12)

Across the line of attachment of a stiffener we require continuity of all field quantities, except
for the possible discontinuity of the transverse shear force resulting from the constraint

(2.13)

In axial direction the mode displacements are periodic, and the resultant axial load is specified
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by the load parameter A, as

where uP is a constant.
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(2.14)

3. PLASTIC BIFURCATION AND POST-BIFURCATION BEHAVIOUR

The stress state in the perfect cylindrical shell prior to bifurcation consists of a constant
uniaxial stress U

ll =Auil at every point of the shell. Thus, at any IoId level the COIDpoIIIDta of
the in-plane moduH t..,. are coastant throqIaout tile _., &ad the lowest bifurc:adoa ... can
be determined as that of an elastic orthotropic sbeD with moduli equal to tile inANE !fOUl
plastic moduli. In the followinl we sbaII use the expressions Elf Ez, Elz and Eo for the physical
values of the plastic branches of £1111, l2m, t lJ"l2 and lJ2IZ, respectively, at the bifurcation
point, and we sball use DI .. E l h3fI2, Dz =Ezh3/12, Dlz =Elzh3/12 and Do .. Boh3/6.

For a complete unstilened cylindrical shell, simply supported at the eadI, ttae bifarCItion
modes are found of the form

(l) 'ltXz a'ltx I
VI =hCI cos-cos--

b b

(3.1)

(l) h 'ltXz . a'ltx
l

w= cos-sm--
b b

where b ='ltRlm (m is the circumferential wave number); or in the form of an axisymmetric
sinusoidal mode. The bifurcation stress Uc correspondina to (3.1) is Jiven by

[Dla
4
+2(Dt2+Do>aZ+Dz) (if+E2~ ( C2 i+ ~)-CIEI2~ ia

~=- 2 ~~

h(~!)

where

CI = (El az+BoXBz+BotrZ)-(Bt2 +Eo)Za2

a 2 b b
Elz(Elz + Eo)'i';- Ez(El a

2+ Bo)di

C2 =(Ela! + Bo)(Ez + BoaS) - (B12 + Eo~a2'

(3.3)

(3.4)

An iterative procedure is used to determine the numerically smallest critical stress uc, the
corresPOndina value(s) of the axial waveparameter a and the instantaneous moduli, for given
material and given values of h, b and R.

In the elastic ranae it is well known that bifurcation of a complete unstiftened sheD occurs at
Uc "" -{3(l- JI~rII2B1t1R, with "veraJ simultaneous buckIina modes[2]. These indude the
axisymmetric modes aad the modes with circumferential wave number m up to a certain
limitina value, above which the bifurcation stress increases with increasiq m. FJIUI'C 2
illustrates this for a rather thick shell, where the limitina value of m is between 12 and 13. In the
plastic range the modulus E I decreases more rapidly than the other prebuckling moduli.
Therefore, the plastic bifurcation stress is smallest for the axisymmetric mode and increases
with increasing circumferential wave number. An example of this is also shown in Fig. 2, for
uy/E = 0.002.
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Fig. 2. Bifurcation stress versus circumferential wave number for complete unsti1fened cylindrical shell
with Rlh .. 200, /I .. 10, 11" 0.3.

In a stiffened shell with stringers located at x2 =b/2,± kb (for integer k) the bifurcation
modes (3.1) are still valid, provided that the only constraint along the stiffeners is the
suppression of radial deflection waves. Thus, the bifurcation stress for the cylindrical panel is
also given by the expression (3.2). Koiter[J] has found that for a sufficiently narrow cylindrical
panel in the elastic range the bifurcation stress (3.2) reduces to

8 =~[l2(1 - ,,2)] b
211 V(Rh)'

(3.5)

This elastic bifurcation stress is valid for (/ s 1, with only one critical wave parameter a =1.
For (/ > I the earlier mentioned critical stress for the complete elastic shell is valid, with two
critical a-values for each circumferential wave number m.

For a cylindrical panel that bifurcates in the plastic range we shall also use the parameter ,
to characterize the "flatness" of the panel. Here again we find two critical a-values for each
value of , in the range 6 > 1, and also in certain ranges of 8 values below unity, dependent on
the values of erdO', and n. In the present investigation the main interest is devoted to cases
where only a single bifurcation mode (one a-value) is associated with the critical stress.
Examples of such cases are shown later in FigS. 3 and 4.

An asymptotic theory of initial post-bifurcation behaviour in the plastic range has been
developed by Hutchinson{6, 7], which extends Hill's general theory of bifurcation in elastic­
plastic solids (II, 12). As in Koiter's elastic post-buckling theory [2] the load in the vicinity of
the bifurcation point is expanded in terms of the buckling mode amplitude, but in the plastic
range the analysis is further complicated by the necessity to account for clastic Unloading.·

In a case where the buckling mode is unique, the asymptotically exact expression for the
load parameter A in terms of the buckling mode amplitude t is obtained of the form

(3.6)

for t C1: O. Here, we normalize the buckling mode so that for f =1 the maximum normal
deflection w is equal to the shell thickness. The constant AI is determined by the requirement
that plastic loading takes place throughout the current plastic zone, except in at least one point
where neutral loading takes place. After bifurcation a region of elastic unloading spreads into
the material from each of these neutral loading points, and the effect of these unloading regions
is accoudted for to lowest order in the third term of the expansion (3.6).

For the cylindrical panels considered elastic Unloading starts on the outside of the shell at
the points of maximum outward deflection. In the limiting case of a flat plate (8 =0) unloading
starts simultaneously at the points of maximum outward- and inward deflection. The value of
the parameter f3 depends on the shape of the Unloading regions spreading into the material [7],
and here we find f3 =1/3. The constant A2 is found negative in all cases. so that the truncated
expansion (3.6) can be used to estimate the maximum support load, which is slightly above the
critical bifurcation load. The values of the constants O'c, A. and ..\.2 are given in Table 1for a few
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Table I. Constants in asymptotic post-bifurcation expansion for various
cylindrical panels

h/b 8 (T)E II n -(T)(T, AdAc A2/Ac ~

0.025 0.50 0.0020 0.3 10 1.104 0.643 -1.91 1/3
0.025 0.50 0.0020 0.3 3 1.162 0.884 -3.59 1/3
0.015 0.75 0.0028 0.3 10 1.033 0.804 -3.49 1/3
0.025 0.75 0.0028 OJ 3 1.052 0.878 ~4.84 1/3

examples of cylindrical panels that bifurcate in the plastic range with only a single bifurcation
mode.

It is known that bifurcation stresses obtained by Jz-(ieformation theory are often in better
agreement with experiments than the predictions of Jrftow theory [7]. However, for the cases
considered in Table t bifurcation does not occur far into the plastic range, so the discrepancy is
rather small with a maximum of 1.7% corresponding to the case 8 = 0.5, n = to.

4. ASYMPTOTIC ANALYSIS WITH NO ELASTIC UNLOADING

The elect of a small initial imperfection on a structure compressed into the plutic raqe has
not yet been described by a simple asymptotic formula sucb as those obtained by Koiter(2] (or
the elastic range. The main diflicuity, is that an asymptotic expansion of the initiallNlrt of the
equilibrium solution is only valid up to the point at which elastic unloading starts, while a
second expansion that accounts for the arowing elastic unloading region is required to represent
the remainina part of the equilibrium path[l3]. Also, the maximum support load of a perfect
elastic-plastic structure is attained at a limit point after finite buckling mode deftections and not
at the bifurcation point as in the elastic range.

Here, we sball ua!yse the imperfection-sensitivity on the basis of Jrftow theory, but wi1h
elastic unloading nqlected. By using this hypoelastic theory the dilliculties mentioaed above
are avoided and an asymptotic estimate is obtained for the imperfection-seaakivity of the
hypoelastic cylindrical panel. This approacb bas been used earlier by HutchinlOR and
Budiansky(8) for the case of a cruciform column, and by Needleman and TverpanI(9) for the
case of an axially corapressed square plate. The cruciform bas the special property thal. often,
no strain rate reversal occurs before the maximum load, so that nqlectina eIaatic unioN. is
completely justifted. For the plate strain rate reversal does occur sliabtly before the maximum
load. However, the results of Ref. [9) show that the bypoelastic expansion give. a reascmable
estimate of the imperfection-sensitivity of an elastic-plastic plate. Here, the asymptotic
expansion based on bypoelastic theory sball be extended to cover sheD behaviour, and sball be
used for the cylindrical panel. As tbe expansion bas been described in detail for the plate[9],
only the main steps are given here.

The perfect shell made of hypoelastic material bas tbe same bifurcation stress as the
correspondina elastic-plastic sheD, but instead of (3.6) the initial post-bifurcation expansion in
the case of a unique buckling mode takes the form

where the biaber order contributions are taken to be orthogonal to the bifurcation mode

i GIIl(I) (/) •
A Ne w...w./JdA=O, forl>l.

(4.1)

(4.2)

(4.3)

The plastic branches of the h-ftow theory moduli are functions only of the stresses, and can be
expanded in a Taylor series about the bifurcation point
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alo/l73 , 1 a2l~ I
l~=£ 0/173 +-- (u,.v - u. "V) + - (u"v - u. "V)(qI'"' - u.".,) + •.•

c au"v c c 2 au""iJqI'"' c c c
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(4.4)

Substituting (4.2) into (2.1) gives the expansion of the strains, and the similar expansion of the
stresses is related to the strains by using (2.7) and (4.4).

Expressions for the parameters AIM, Al- etc. are obtained by substituting the expansions
into the incremental principle of virtual work (2.11). Hutchinson [7] has given the expression for
AIM, which is zero for the cylindrical panel due to symmetry. The expression for A2

M is
considerably simplified if A/Ie =0, in which case we find

(4.5)

(4.6)

(4.7)

where V is the volume of sheD material corresponding to the middle surface area A.
The expressions (4.6) and (4.7) depend on the second order contributions to the asymptotic

expansions, which are found by solution of a variational equation obtained from the principle of
virtual work. For A/w = 0 the variational equation takes the form

1
(2) (2) (2) (I) (I)

A {M"'81Cof1 + N""8 C
Eo/I + Nco/lw...8w., + N""w..,8w.,} dA =0

(2)0/1 I' ~(2) 1(I),." iJl~1 (I)

u = L.c '173 +2u lJu"" c '173

(2) 1 (2) (2) (2) 1 (I) (I) 3(2)

'173 =2(V.,,1 + vI,.,) - d,.,w +2 W,.,W.I - x W.73

(4.8)

(4.9)

(4.10)

(2) (2) (2) (2) (2)

where N"" and M'" are obtained from (2.10) using (4.9) and (4.10). The solutions Vh V2, ware
periodic in axial direction, and are the same in aD panels, as they grow proportionally with £2
while neighbouring panels have identical bifurcation modes with opposite sips of the am­
plitudes. Thus, the second order mode displacements are symmetric about the line of attach­
ment of a stiftener, in addition to the symmetry about the panel centre lines.

The load terms in eqn (4.8) sugest that the boundary value problem has a solution of the
form

(2) • 2a'lrx I

VI =EX1+VI sm-
h
-

(2) 2a'lrX I

V2 =V2 + V2 cos-h-

(2) 2a'lrx I

w= W+ IVcos-
h
-

(4.11)
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where i is a constant, and '62, Iii, Vto 62 and ~ are functions of x2
• Furthermore, this solution

satisfies the orthogonality condition (4.3). With the solution (4.11) the variational equation
separates into two independent boundary value problems in the interval 0 s x2 S b12, one for
the ()-quantities and one for the ()..quantities. Each of these problems is solved numerically by
making a finite element approximation of the x2-dependent functions in terms of Hermitian
cubics. The ()-quantities automatically satisfy the constraint (2.13) and thus have the
boundary conditions (2.12) at both ends of the interval x2 =0, b12. For the ()..quantities the
boundary conditions are (2.12) at x2 =0, and at x2 = b/2 the boundary conditions are the three
first conditions in (2.12) and the condition ~ =0, which results from (2.13). Furthermore,

according to (2.14) the integral of ~IJ over the panel width must vanish.
The imperfections considered in this analysis are taken in the shape of the critical

bifurcation mode (3.1) with amplitude {. The asymptotic analysis of the inftuence of such
imperfections is divided into a singular perturbation analysis valid for A near Ac, a regular
perturbation analysis valid for A< Ac, and finally the matching of these two results [8,9].

The 'singular perturbation analysis gives the following asymptotic expression for A as a
function of ~, in the vicinity of ACt

(4.12)

where the constants c and k are undetermined by the analysis, ~d

=({a£-HI (I) ((I) "at~1 _h
3 auo"'''1 (I) )

~l J;. ~ c Ie..,. W 8A. c 12 8A. c Ie.,.

al-H! (t) (I) a,;.! auo"'''1 (I) )}+-- t..,. N"" -h-- e." dA
~ c aA c iJA c

{{al-HI auo"'''! (h3
(I) (I) (I) (I)) aNoal, (I) (I) }

~2= JA a;;:;;- c-ai: c 12 ICIIIJIC.,. +he..-e.,. +~ c W... WJI dA.

(4.13)

(4.14)

(4.15)

Here, and in the foUowing~ denotes the linear part of the membrane strain tensor c.,. For an
elastic material, linear or nonlinear, the parameter '" equals unity.

In the rqular perturbation analysis the lowest order effect of a small imperfection is
determined for A< Ac• The displacements, strains and stresses are written as

°+ - °+ - ° - ..- aIJ-aIJV.. =v.. v.., W =W W, 1/../l = e../l+ 1/aIJ, u = Uo + u (4.16)

(4.17)

where tile solution for the perfect sheD at the cunent load level A is denoted by ( )0, wbile (j
denotes s1D8ll perturbation quantities that vanish at A= O. AU equations are liDearized with
respect to the small perturbation- and imperfection quantities. Thus, the constitutive eqlllaion
(2.7) yields the linearized relation

dU
aIJ =lo""'~+ a£"-"', ,pI' de~

dA dA au"''' ° dA

and the linearized principle of virtual work takes the form

1 -"'" -all ..(I);. {N &., +M ~ +Noa/l(Iii... +~w ... )8wJI}dA = O. (4.18)

To solve eqn (4.18), we expand 6.. and Iii in terms of the set of eigenfunctions of the form
(3.1), with any integer number of halfwaves along the length of the shell and over the width of
the panel. We also use the fact that both £0""'" and
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iJLafJ"I8l de~
iJu"v 0 dA

appearing in (4.17) are orthotropic fourth order tensors in the sense
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(4.19)

This property is employed together with the fact that for each eigenfunction in the expansion
also the corresponding e~ and K~ vary as sines or cosines, and the result is a complete
decoupling of the equations for the eigenmode amplitudes. Finally we find that the variation of
the amplitude t of the critical eigenmode (3.1) can be written on the form[9]

(4.20)

where t/I is given by (4.13) and peA) is finite at A =Ac• The function peA), and in particular the
value p(Ac ), is computed by using the eigenmode expansion in (4.18) and (4.17) and solving for
increasing A in the interval O:s A< Ac (see Appendix).

Matching of the expression (4.20) with the rising part of (4.12) in the vicinity of A=Ac
determines the values of the two constants c and k

k = 1/1/1. (4.21)

Now, according to the expression (4.12), with the values (4.21) substituted, the hypoelastic
structure is imperfection-sensitive provided that AZM <0. In that case an imperfection of
amplitude i converts the bifurcation buckling into snap buckling at a reduced load A, given by
the asymptotic estimate

(4.22)

(4.23)

Numerically obtained values of the bifurcation stress fTc and of the hypoelastic post­
bifurcation coefficient AZ

M are given in Figs. 3 and 4 as functions of the flatness parameter 6.
The panels considered have a fixed thickness to width ratio hlb =0.025, but various levels of
yield stress are considered, with strain hardening exponent n =10 in Fig. 3 and n =3 in Fig. 4.
The curves are only drawn in the ranges, where a single axial wave parameter a is associated
with (Te' Clearly, the change from one to two critical a-values occurs closer to the yield stress
when 6 is closer to unity.

For the elastic panel AzMIAe reduces exactly to the corresponding elastic post-bifurcation
coefficient, with the value io- J/z) in the plate case (6 =0), and with the change from stable- to
unstable post-bifurcation behaviour at 6'" 0.64, as obtained by Koiter[l]. For low strain
hardening, Fig. 3, the material nonlinearities result in imperfection-sensitivity, even at small
6-values. At the larger 6-values material nonlinearities and geometric non-Jinearities contribute
about equally to the imperfection-sensitivity, so that AzM is close to the corresponding elastic
value. For the high hardening material, Fig. 4, a stable post-bifurcation behaviour is found for
small 6-values, but the chanBe to unstable behaviour occurs at a smaller value of 6 than that
found for the elastic panel. Both in Fig. 3 and Fig. 4 we note that the values of AZM

, as functions
of 6, are discontinuous at the points where U e equals the yield stress, because the moduli­
derivatives are discontinuous at the yield stress.

Some values obtained for AZM
, t/I, p(Ac ) and IL are given in Table 2. For comparison, the

value of p(Ac ) obtained in the elastic range (with linear prebuckling) is unity, so that with t/I =I
the expression (4.23) for IL reduces to the well-known result for elastic buckling. It is of interest
to note that the values of IL obtained in Table 2 are smaller (down to 25%) than those obtained
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Pis. 3. BifurcaUon stress and hypoelastic~ codcient versus lIataess parameter for elastic­
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Table 2. Constlats ill IIypoeIastic asymptotic analysis for cylindrical panels
with frI". 0.025 and ". 0.3

, trJE II -11',)., ),2-'),0 • p(),o) p.

0.50 0.• 10 1.104 -0.414 1.116 0.045 0.344
0.50 0.0020 3 1.162 -0.059 1.23t 0.421 0.489
0.7S 0.0028 10 1.033 -0.430 I.lSO 0.278 0.6.58
0.7S 0.0t28 3 1.052 -0.330 1.071 0.628 0.971

by the elastic formula. for the same values of ).2"'/).". In the next section the values liven in
Table 2 shall be used to compare the asymptotic estimate of imperfection-sensitivity with
nUlllCrical results.

S. NUMERICAL COMPUTATION OF IMPERFECTION·SENSITIVITY

The behaviour of imperfect panels is here computed numerically by an incremental
procedure based on the variational equation (2.11). As in the precedina section, the im­
perfections considered are taken in the shape of the critical bifurcation mode (3.1) with
amplitude l.

In the numerical method employed to solve (2.11) the displacements are expanded in terms
of trilOnometric functions in the axial direction. while a one-dimensional finite element
approximation is used in the circumferential direction.
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Here, the functions U(I)(X2), yt/)(x2) and wt/)(x2) are approximated by Hermitian cubics within
each finite element, and the wave parameter a is that corresponding to the critical bifurcation
stress. This method has also been used for an axially compressed oval cylindrical shell[l4),
within the context of a more accurate shell theory.

The boundary conditions specified are the symmetry conditions (2.12) at the panel centres in
addition to the stiffener constraint (2.13), which gives W(I)(b/2) == 0 for i i!: 1. In the expansion
(5.1) it is found that N = 2 gives good accuracy, with a half panel width divided into 2 elements.
The integrals in eqn (2.11) are evaluated by 4 point Gaussian quadrature in circumferential
direction within each element, while in the axial direction it is found sufficient to divide the
interval -!bla:s xl:s !b/a in two subintervals, using 4 point Gaussian quadrature within each
subinterval. Through the thickness Simpson's rule is used, with 7 points in (2.10).

The active branch of the tensor of moduli (2.8) at an integration point is determined in each
increment as follows. If the stress state at the integration point is on its current yield surface.
the plastic branch is taken to be active. If tT, for that integration point turns out to be negative,
the elastic branch is taken to be active in the next loading increment. This. procedure is
sufficiently accurate if small increments are used and if the transition from loading to unJoadina,
or vice versa, occurs only once or twice during the loading history.

The results of numerical computations shown in Fap. 5-8 give the load parameter ,\ as a
function of the deftection contribution WI == ~I)(O), which is quite a good measure of the
bifurcation mode growth. All the results are computed for h/b" 0.025 and ,,= 0.3, with strain
hardening exponent n =10 in the first two figures and n = 3 in the last two figures. The flatness
parameter and the yield stress are taken as fJ =0.5 and u,JE =0.002 in Figs. 5 and 7. while the
values used in FIgS. 6 and 8 are fJ =0.75 and uJE =0.0028.

The post-bifurcation behaviour of the perfect panel is computed numerically as the be­
haviour of a panel with a small ini~ imperfection l =0.0002. In all four figures this behaviour

x maximum

o initial yield

x maximum

o initial yield

~ r--......--~-..-Pe-rf-ec....t·-'-~-----.-----,

o~_-L-_--'----,--_..........- ..................,.,.,.-J 0 ~--'----'---~-'-""---'--:-:.,..--J

o 0.2 0.4 0.6 0.8 1.0 W1 1.2 0 0.2 0.4 0.6 0.8 1.0 ~ 1.2
h h

Fig. 5. rig. 6.

Fig. 5. Load versus mode deflection for cylindrical panel that bifurcates in the plastic raJIIC <1I/b '" 0.025,
(J = 0.5, o-JE '" 0.002, /I '" 10, ,,'" 0.3).

Fig. 6. Load versus mode deftection for cylindrical panel that bifurcates in the plastic r&JIIC (1I/b '"' 0.025.
(J = 0.75, o-,JE '" 0.0028. /I = 10. IJ '" 0.3).
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F... 7. Load venua IIlode cletectioa for cylilldrical palIII that biflRa&es ill the plMtic raIIIe (III" • 0.025.
,. 0.5. #TiB. 0.002. II • 3... - OJ).

F... 8. Load YerJUI mode deIectioII for cyliDdrical paael that bifurcIta ill the plastic .... (III" -0.025.
, • 0.7S. #T,IB. O.OdI. /I • 3... - 0.3).

is seen to aaree with the asymptDti<: expansion (3.6) in that bifurcation takes. place under
intreasq load and in that a maximum is reached sliabtly above the bifurcation lO$l after a
finite bifurcation mode deftettion. As this cbaracteristic behaviour results from the elett of
elastit unloadiua. it is not predicted by the hypoelastic post..bif:urcation expansion (4.1).
However, the hypoelastic expansion with the values obtained for A,,"'Ac (Table 2) does aaree
well with the aeneral trend of the numeritaUy computed post-bifurcation behaviour in eath of
Fias. 5-8, apart from the maximum just after bifurcation.

The shell considered in F... 5 is in the I'lUIIC' of '-vaIues, where elastit cyliadrica1 panels
have a stable post-buckling behaviour. The elastic-oplutic panel with II =10 is clearly im­
perfection sensitive. For the laqeat imperfedion considered, 1=1.0, a muimum is not readied
in the I'lUIIC' tonsidered, but the curve Iattens out at a level of reduced support load.

In Fig. 6, for a more curved panel with a hiaher yield stress, but still with the strain
hardening exponent II =10, the behaviour is quite similar to that obtained in Fig. 5. The
sensitivity to small imperfettions is slightly higher, but for the largest imperfettion the support
load is a little less reduced.

The cyUndrital panel considered in FIg. 1 is identical to that of Fig. 5, except that the
material is high hardenina with II =3. For the perfect panel the post-bifurcation load after the
maximum decreases to a value slightly below the bifurcation load, in agreement with the small
negative value obtained for A2'w/J,c, but then starts to increase again in the more advanced
post-buckling range. The result is that even for the small imperfection, 1=0.01, no maximum is
found before the support load exceeds the bifurcation load.

The panel in Fig. 8 is that of Fig. 6, with the strain hardening exponent changed to n =3.
The behaviour is much like that found in Fig. 7, but the post-bifurcation load reaches a
considerably lower level before again starting to increase in the advanced post-buckling range.
In this case a local maximum is found for ( =0.01, but not for (= 0.1.

A comparison between the numerical results and the asymptotic estimate (4.22) of the
imperfection-sensitivity is given in Fig. 9. Here the curve (4.22) is drawn on the basis of the
parameters q, and p. given in Table 2. and the numerically computed support loads are indicated
by a dot for (= 0.0002, (= 0.01 and (= 0.1. In Figs. 9(a) and (b), corresponding to Figs. 5 and
6, the agreement is very good for the range considered. However, for the large imperfection
1=1.0 the support load is underestimated by the asymptotic analysis. as one would expect.

In Fig. 9(c) the agreement is also good for the smallest imperfection, but for (= 0.1 no
maximum is reached in Fig. 8, so the range of validity of the asymptotic expansion is smaller in
this case. Such limited range of validity of the asymptotic results bas also been found for elastic
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Fig. 9. Comparison of numerical results and asymptotic hypoelastic predictions for the imperfection­
sensitivity of elastic-plastic cylindrical panels. (a) Panel with '''' 0.5, O',JE'" 0.002, 11 = 10. (b) Panel with

B'" 0.75. O',IE '" 0.0028, II '" 10. (c) Panel with 11"'0.75, O',IE =0.0028, n =3.

buckling behaviour in a number of cases, in which the initially unstable post-buckling behaviour
changes to stable behaviour in the advanced post-buckling range[15). This also agrees with
Koiter's conjecture of the advanced post-buckling behaviour for elastic cylindrical panels[l).
The asymptotic ~sults corresponding to Fig. 7 have not been plotted, as no maxima are
obtained in this figUre for comparison. The value of Ii- found for this case (Table 2) indicates a
great deal of senSitivity to small imperfections, but as the change to stable advanced post­
buckling behaviour occurs considerably earlier in Fig. 7 than in Fig. 8 an even smaller range of
validity of the asymptotic result must be expected here.

Although the hypoelastic analysis does not account for the effect of elastic unloading, it is
found that the asymptotic estimate (4.22) gives a good indication of the imperfection-sensitivity
of an elastic-plastic cylindrical panel. This agrees with the results obtained for axially
compressed square plates [9). The range of validity of the asymptotic estimate is found to be
smaller for a high hardening material than for a low hardening material, because panels made of
a biah hardening material have the ability to support loads above the bifurcation load in the
advanced post-buckling range. As in Ref. [9) we conclude that the approximation of neglecting
elastic unloading in the hypoelastic expansion seems to be less important than the ap­
proximation involved in considering lowest order asymptotic results. It may be expected that
also for other shell structures the hypoelastic analysis will prove valuable for identifying
panuneter ranges, where the shells will exhibit imperfection-sensitivity in the plastic range.
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APPENDIX
The function p(A) occ:urriDa in (4.20), aDd in partic:uuIar the value p(A.) to be used in (4.21) lIIld (4.23), is determined by

intep'ltiDa tile~e relation (4.17) ad subltilutiaa tile result into tile priDciple of virtual wort.
For the intepation of (4.17) it is convenient to write

u'" = 1.0...."." + 0"'.
Substituted into (4.17) tJIia lives the diferential equa&iolls for 0'"

Hi'"_R'" ~." = s-'
iJA ."

where

(AI)

(A2)

(AJ)

(A6)

['£"" '£....1 ] a.Os-' - - I i.e""'---;- lo- =-i".
".. 0 iJr'" 0 IA

In eqIl (A2) tile diI........... for ~'2 is uncoupled with tile odIIr cIiIereDtiIl ......, lIIld .... die IOIadoD

~12_Op[ - f -2R12
12 dA.]f S'2 exp [1' -2R12

•2dA] cU. (AS)

The two~ diI.....~ for ~II ud ~ CIa be writtlm ..~••"d equaIlou in ..... of tile two
quutiIies O' +. ,.f?' IIld Oil +,iP', napeetiveIy, .....

,.(A)} _ R22a; - Rll
n :I: V[(RJi R22ri+4B22I1RIlW.

'iA) II

~1I+'I~22_"I-1 f II.(SII+,.sD)cU

~1I+'Z~_qz-1f qiSII+'zSD)cU

(A7)

(AB)

(A9)

(AI0)

".(A)-op[f -(R II
II + 'IR22

I1)dA.]

IIiA)-elp [f -(R II
II +'zR22l1)cU].

In the Iiaear elastic I'IqI, wIIm die JDOduli.derivatives vuiab, (A6) has DO ....... but 1Iere Q'" - 0 is seeD directly.
TIle ........ oIIeIiMd fGr """ 11'I ........... into (AI), IIld to SIIlsty 2n liua 11'I ...... iIdo die

principle of virtual work (4.18), usiIa (2.10). Now, expandiDc 6. aDd Iii ud.. tile IIIti,. die to tile GItIIDUopy
(4.19), we bdy obtaia ...... for tile bifIn:I&ioD mode mpIitIIde I(A), of tile form

lo<A)l+~ [/,(A)r!1(A)fcU]+!(Ali=O

where I.. 'It!1 ad! 11'I know. fuactions of A. The equation for p(A) is obtaiDecI directly by substitutiIII the expression
(4.20) into (AI0), lIIld die value p(A.) is obtained by soIvina IIICCeIIively for inc:nuiaa A in tile interval Os A< A..


